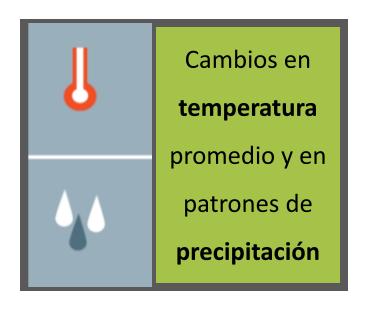


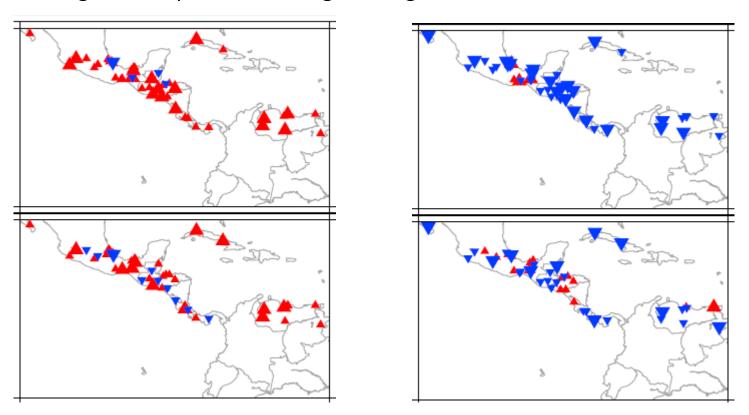
Taller de capacitación sobre proyecto NAMA - café

Variabilidad climática y adaptación



Adaptación al Cambio Climático

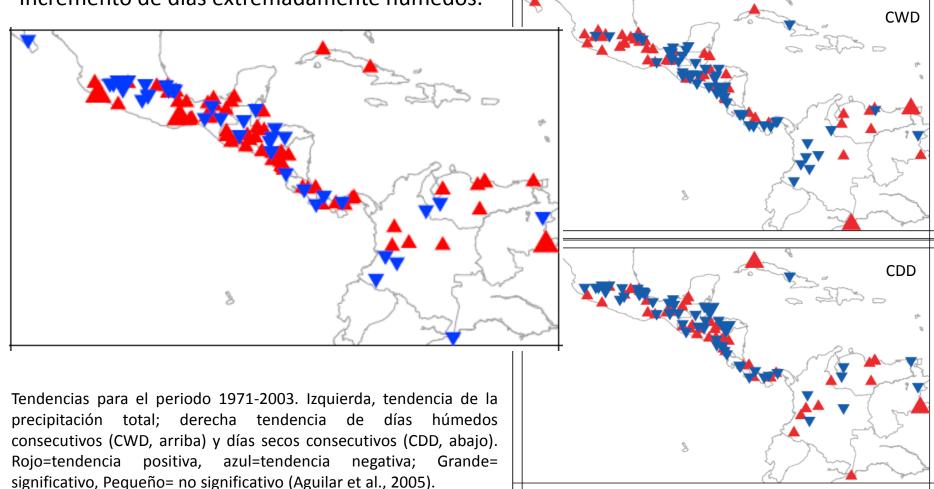
- ≥ El cambio climático
- >Impactos del cambio climático en agricultura/caficultura
- → ¿Qué es adaptación?
 - ➤ Opciones de adaptación
- Adaptación basada en Ecosistemas y servicios ecosistémicos en cafetales
 - ➤ Adaptación en el cultivo del café
- Ventajas y desventajas de la Adaptación basada en Ecosistemas


El cambio climático en Centroamérica

- Es una de las regiones donde se han observado mayores cambios en la cantidad de precipitación y temperatura (Giorgi, 2006).
- En los últimos 40 años se ha observado un aumento de la temperatura promedio y en la intensidad de la precipitación (Aguilar et al. 2005).

Hay cambios observados en temperatura

- Calentamiento general de la región
- Incremento en los extremos calientes de temperaturas máximas y mínimas
- Decrecimiento de extremos fríos
- Cambio del rango de temperaturas en algunas regiones

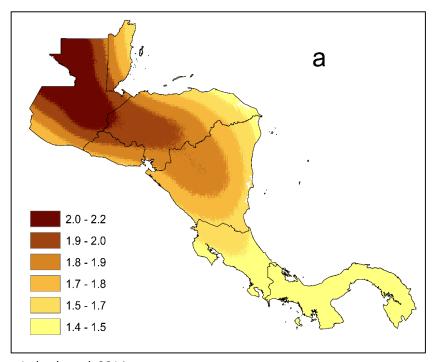


Tendencias para el periodo 1971-2003. Izquierda, días y noches cálidos; derecha tendencia de días y noches fríos. Rojo=tendencia positiva, Azul=tendencia negativa; Grande= significativo, Pequeño= no significativo (Aguilar et al., 2005).

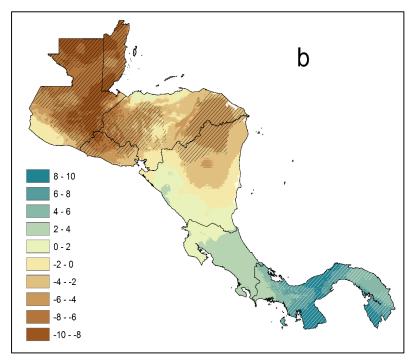
Hay cambios observados en precipitación sin embargo...

- Menos cambios significativos en la precipitación, y en ambos sentidos.
- Aumentos en la intensidad de la precipitación.

Incremento de días extremadamente húmedos.



¿Qué dicen los escenarios futuros?


Cambios de temperatura y precipitación a nivel regional

- Escenario RCP 4.5
- 19 Modelos Climáticos
- Previsión para el año 2070

Variación de la Temperatura (ºC)

Variación de la Precipitación (%)

Imbach et al. 2014

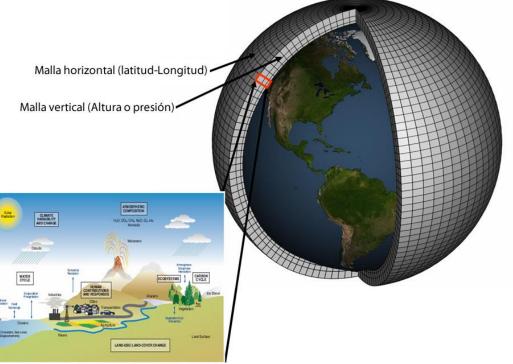
IPCC y Escenarios Futuros de Cambio Climático

Al detectar el problema del cambio climático mundial, la Organización Meteorológica Mundial (OMM) y el Programa de las Naciones Unidas para el Medio Ambiente (PNUMA) crearon el **Grupo Intergubernamental de Expertos sobre el Cambio Climático (IPCC)** en 1988.

La función del IPCC consiste:

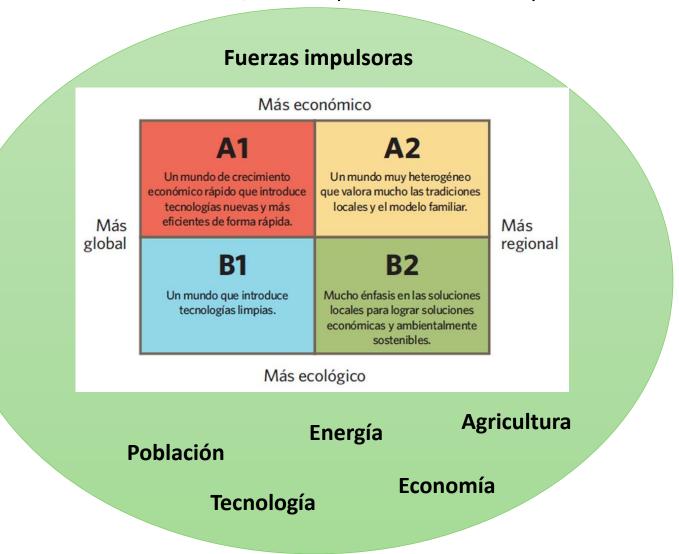
- Analizar la información científica, técnica y socioeconómica relevante para entender los elementos de riesgo que supone el cambio climático provocado por las actividades humanas
- Posibles repercusiones y las posibilidades de adaptación y atenuación del mismo.

Una de las principales actividades del IPCC es hacer una evaluación periódica de los conocimientos sobre el cambio climático.


- Primer informe de evaluación 1990
- Segundo informe (SAR) en 1995
- Tercer informe (TAR) en 2001
- Cuarto informe (AR4) en 2007
- Quinto y último informe (AR5) en 2014

Modelos climáticos o GCM

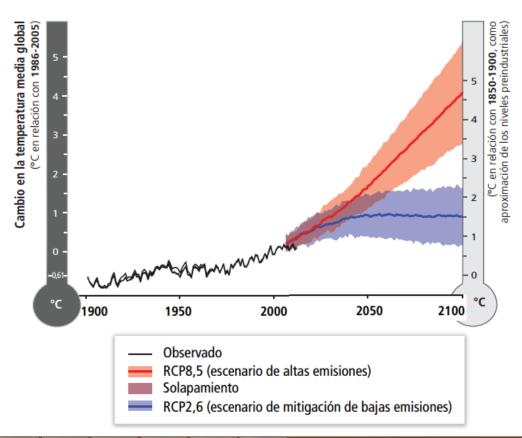
Son modelos numéricos que representan procesos físicos en la atmósfera, océano y superficie terrestre, y sirven para similar las respuestas del Sistema climático global al incremeno de GEI.


- Confiables a escalas grandes ya que logran reproducir climas observados y pasados
- Numerosos modelos
- Mejores para algunas variables (temperatura) que para otras (precipitación)

Esquema de un Modelo Global de Atmósfera

Los escenarios de emisiones

Los escenarios son herramientas útiles para caracterizar las posibles futuras trayectorias socioeconómicas, CC e implicaciones de las políticas.


Los escenarios de cambio climático

Los escenarios son herramientas útiles para caracterizar las posibles futuras trayectorias socioeconómicas, CC e implicaciones de las políticas.

Varios escenarios en función de las emisiones esperadas y de los esfuerzos de mitigación: RCP2.6, RCP4.5, RCP6, RCP8.5 e intermedios.

Estos se combinan con modelos del clima para tener escenarios de cambio

climático

El cambio climático en Centroamérica

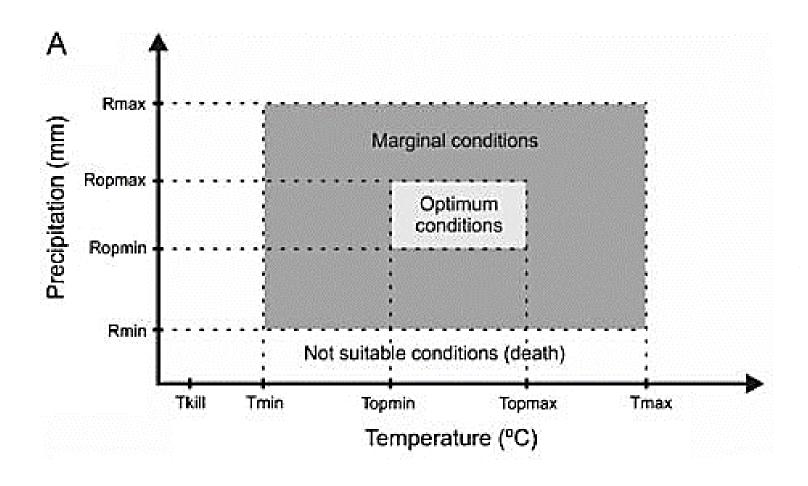
 Afecta principalmente los medios de vida de la población rural, específicamente el sector agrícola

- Los pequeños productores son los más afectados y las menos preparados para hacer frente a los impactos del CC.
- La rapidez y falta de conocimiento sobre este proceso puede superar las capacidades de adaptación actuales de estas comunidades

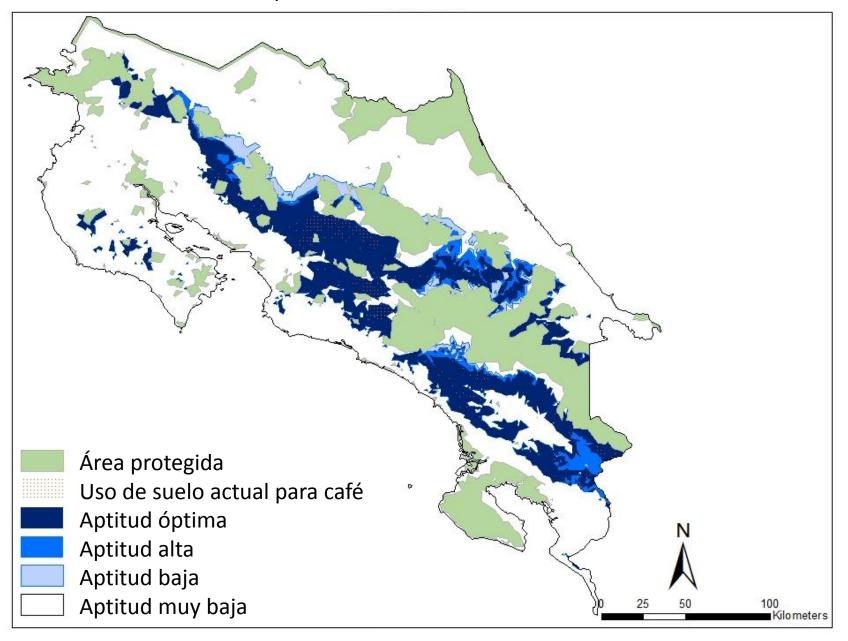
Impactos esperados del cambio climático en la agricultura

- Cambios en **fenología y producción** de los cultivos (por ejemplo floraciones fuera de época o floraciones continuas)
- Aumento de estrés hídrico en algunas regiones
- Inundaciones en algunas zonas agrícolas

Impactos esperados del cambio climático en la agricultura



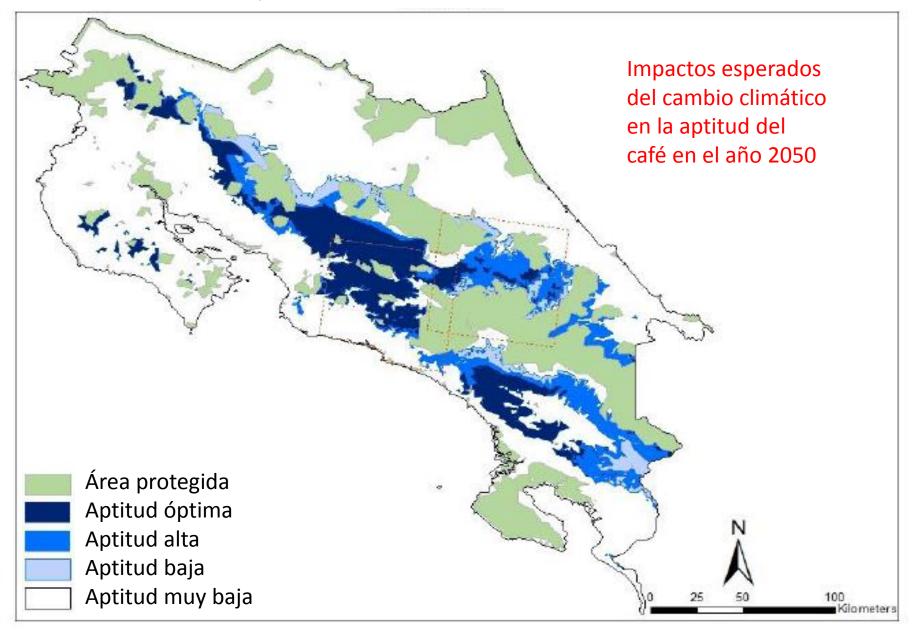
J. Avelino



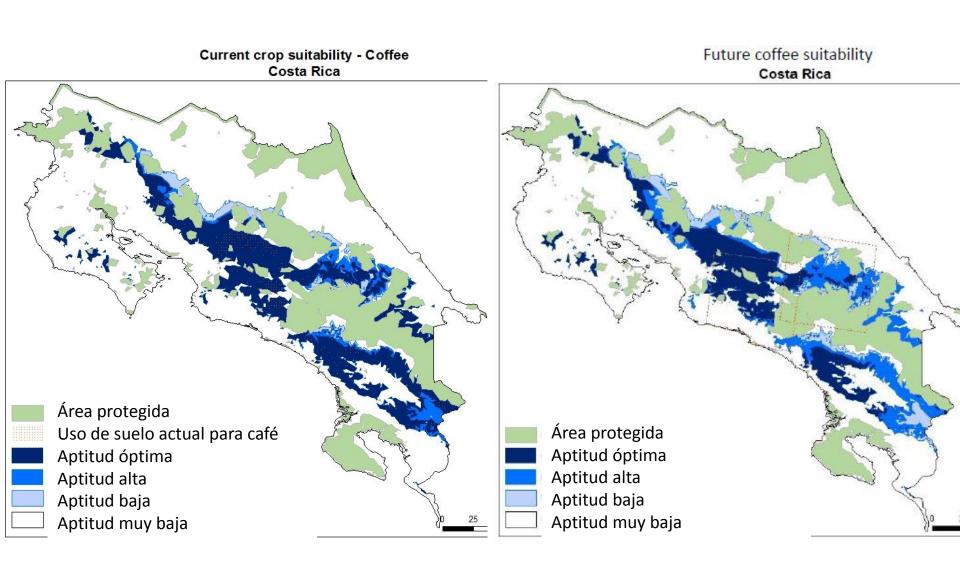
- Cambios en la afección y virulencia de enfermedades y plagas
- Incremento en degradación y erosión del suelo
- Pérdida de aptitud y productividad de cultivos y pasturas

La aptitud de un cultivo

Aptitud actual del café, Costa Rica


Un ejemplo práctico: la aptitud del cultivo del café

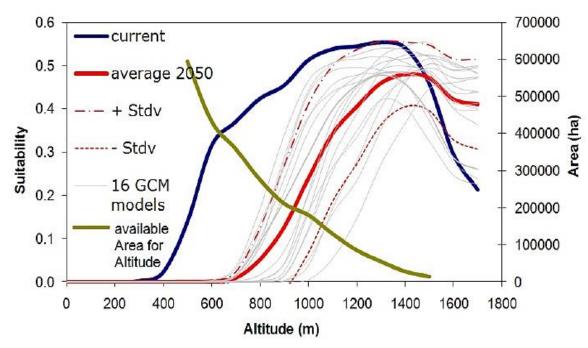
- Se utilizó el modelo *Ecocrop* para evaluar la aptitud presente y futura de café y para entender los cambios en la aptitud de los cultivos en el futuro
- EcoCrop es un modelo fisiológico de aptitud de cultivos basado en rangos establecidos de temperaturas y precipitación óptimas, así como de límites climáticos donde la producción de un cultivo determinado puede ser posible
- La temperatura y precipitación óptimas para cada cultivo fueron obtenidas de la base de datos *EcoCrop* disponible a través de la FAO http://ecocrop.fao.org/ecocrop/
- El resultado del modelaje es un valor continuo de aptitud que va de 0 (sin aptitud) a 1 (aptitud óptima) para cada cultivo


La aptitud futura del cultivo del café: métodos y datos climáticos

- Los datos climáticos mensuales actuales y futuros se obtuvieron de un sitio web especializado llamado WorldClim en 1 km de resolución
- Clima actual = promedios mensuales de 1950-2000
- Clima futuro = promedios mensuales de 2040-2060
- Utilizamos los datos de temperatura y precipitación de 17 *Modelos Climáticos Globales* (*GCM*, *por sus siglas en inglés*) para capturar un amplio rango de proyecciones climáticas futuras
- Todas las proyecciones de los GCMs fueron las mismas empleadas en el reporte más reciente del IPCC (Fifth Assessment)

Aptitud futura del café, Costa Rica

Aptitud actual y futura (año 2050) del café en Costa Rica



Se espera que el café sea "más apto" en las zonas altas pero...

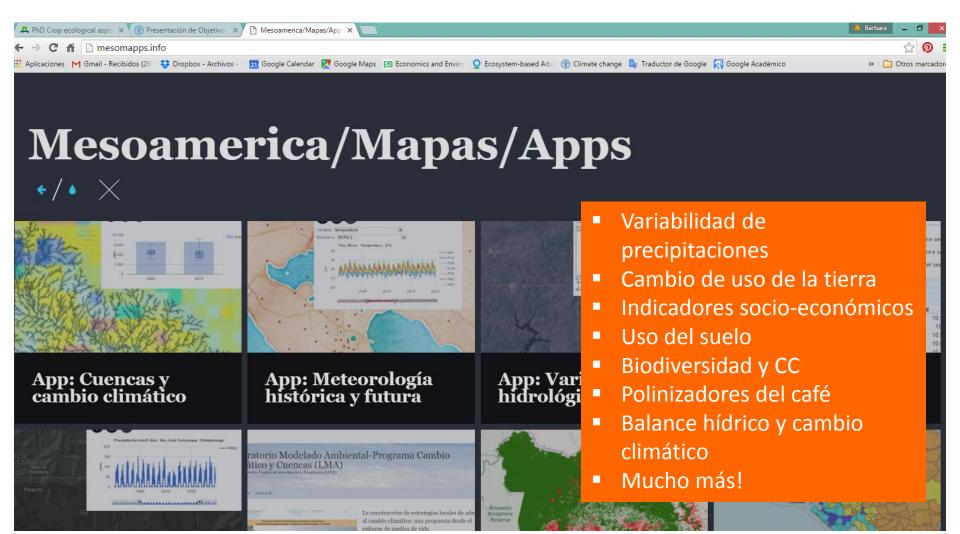
- Cambio de aptitud
 - Desplazamiento en altura
 - Reducción del área apta

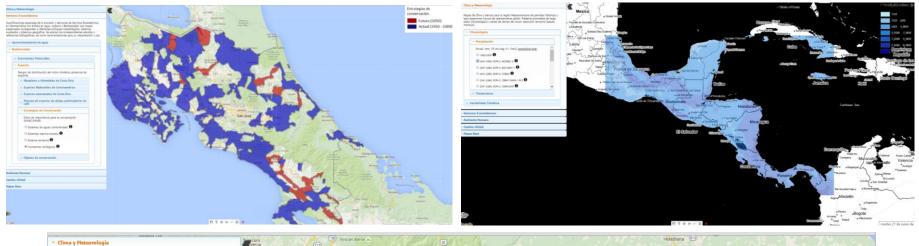
Focos de presión, adaptación, abandono

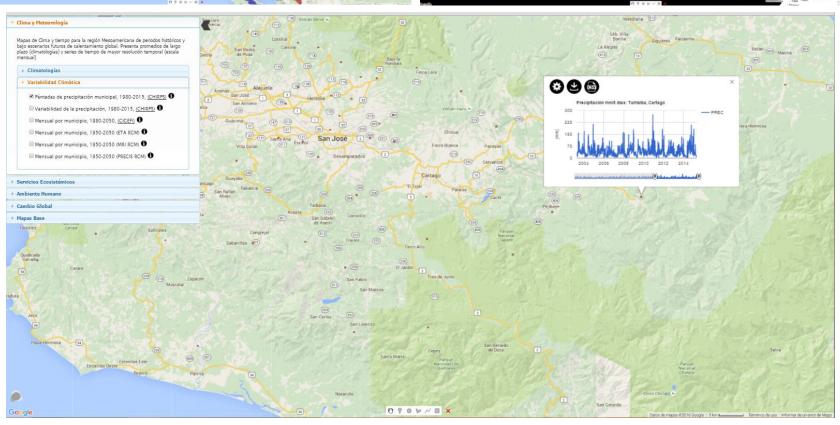
CIAT (2010). Datos para Nicaragua

Área apta real < < Área apta proyectada

Resumiendo...

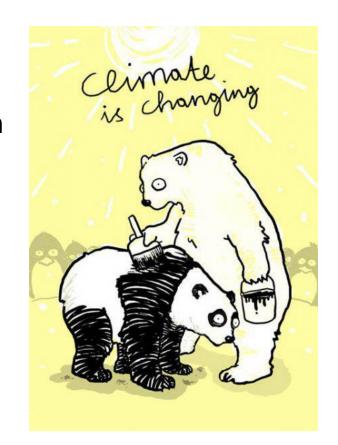

> Reducción de precipitaciones

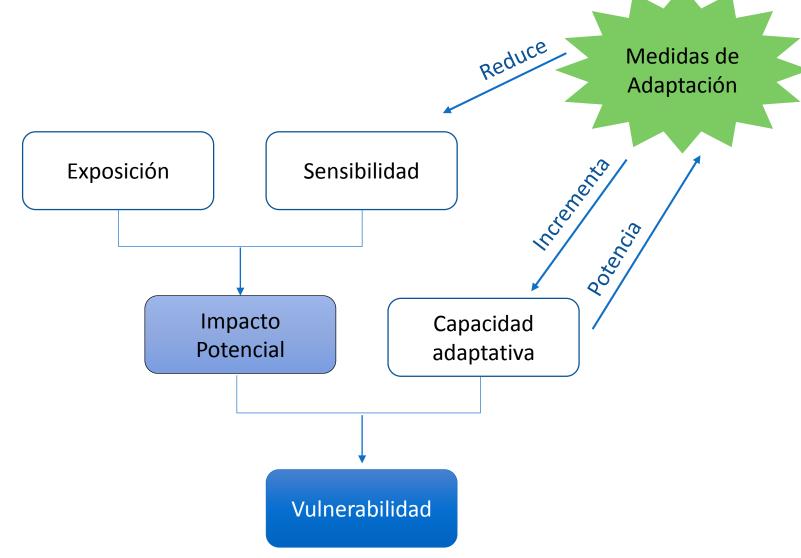

Cafetaleros perdieron 20.000fanegas con último temporal


Necesidad de adaptarse

Estar informados es necesario para tomar buenas decisiones

LMA/CATIE → http://mesomapps.info/




¿Qué es Adaptación al cambio climático?

- Proceso de ajuste al clima real o proyectado y sus efectos.
- En los sistemas humanos, la adaptación trata de moderar o evitar los daños o aprovechar las oportunidades beneficiosas.
- En algunos sistemas naturales, la intervención humana puede facilitar el ajuste al clima proyectado y a sus efectos.

(IPCC, 2014)

Vulnerabilidad y adaptación

Estructurales y físicas

- Ingeniería
- Tecnología
- Adaptación basada en Ecosistemas
- Servicios

Estructurales y físicas

- Ingeniería
- Tecnología
- Adaptación basada en Ecosistemas
- Servicios

Sociales

- Educación
- Información
- Comportamiento

Estructurales y físicas

- Ingeniería
- Tecnología
- Adaptación basada en Ecosistemas

Sociales

- Educación
- Información
- Comportamiento

Institucionales

- Económicas
- Leyes y regulaciones
- Políticas y programas, seguros

Opciones específicas de adaptación al cambio climático en el sector cafetalero que ya se están implementando

• Uso de variedades mejoradas:

ICAFE realiza investigaciones continuas sobre el desarrollo de nuevas variedades, con resistencia a enfermedades, productividad y manteniendo la calidad de taza

- Mayor uso de biocidas y fertilizantes: necesario dependiendo de condiciones del clima y de enfermedades que pueden atacar más con estos cambios
- Sistemas de Alerta Temprana SAT (basadas en monitoreo de parcelas y datos meteorológicos)

Estructurales y físicas

- Ingeniería
- Tecnología
- Adaptación basada en Ecosistemas

Sociales

- Educación
- Información
- Comportamiento

Institucionales

- Económicas
- Leyes y regulaciones
- Políticas y programas, seguros

¿Qué es la Adaptación basada en Ecosistemas?

La Adaptación basada en Ecosistemas (AbE) es el uso de la biodiversidad y de los servicios ecosistémicos como parte de una estrategia de adaptación global para ayudar a las personas a adaptarse a los efectos adversos del cambio climático.

Gestión sostenible + conservación + restauración → servicios ecosistémicos → Adaptación

Servicios ecosistémicos

Son beneficios (bienes y servicios) que la sociedad obtiene de los ecosistemas de forma directa o indirecta.

Servicios de aprovisionamiento

Productos obtenidos de los ecosistemas

Alimentos

Agua dulce

Leña

Fibras

Bioquímicos

Recursos genéticos

Servicios de regulación

Beneficios obtenidos de la regulación de procesos de los ecosistemas

Regulación de clima

Regulación de enfermedades

Regulación y saneamiento del agua

Polinización

Servicios culturales

Beneficios no materiales obtenidos de los ecosistemas

Espiritual y religioso

Recreativo y turístico

Estético

Inspirativo

Educativo

Identidad de sitio

Herencia cultural

Servicios de soporte

Servicios necesarios para la producción de otros servicios de los ecosistemas

Formación de suelos Reciclaje de nutrientes Producción primaria

Tomado de Camacho Valdez y Ruiz Luna, 2012

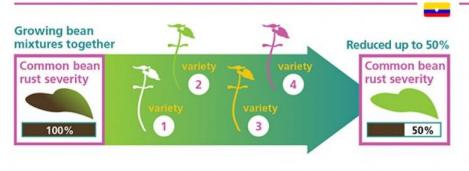
Ecosistema

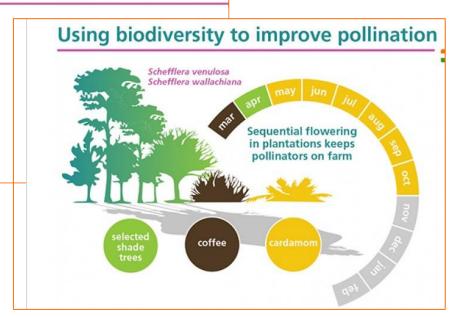
Servicios ecosistémicos

Agricultura

Ecosystem services contribute to agricultural productivity

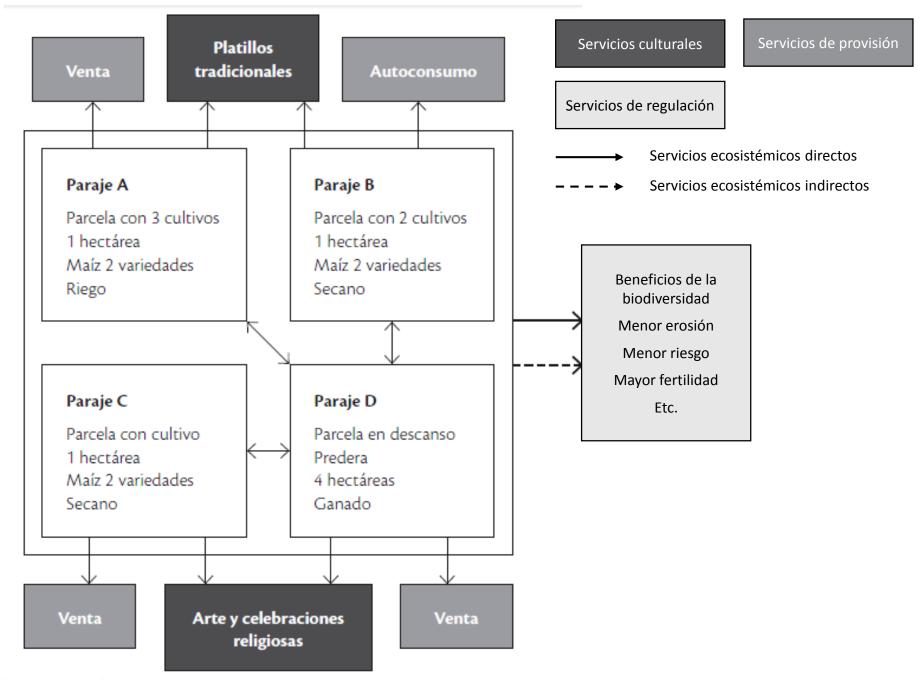
Ecosystem services provided by rainforest to coffee farms, Costa Rica

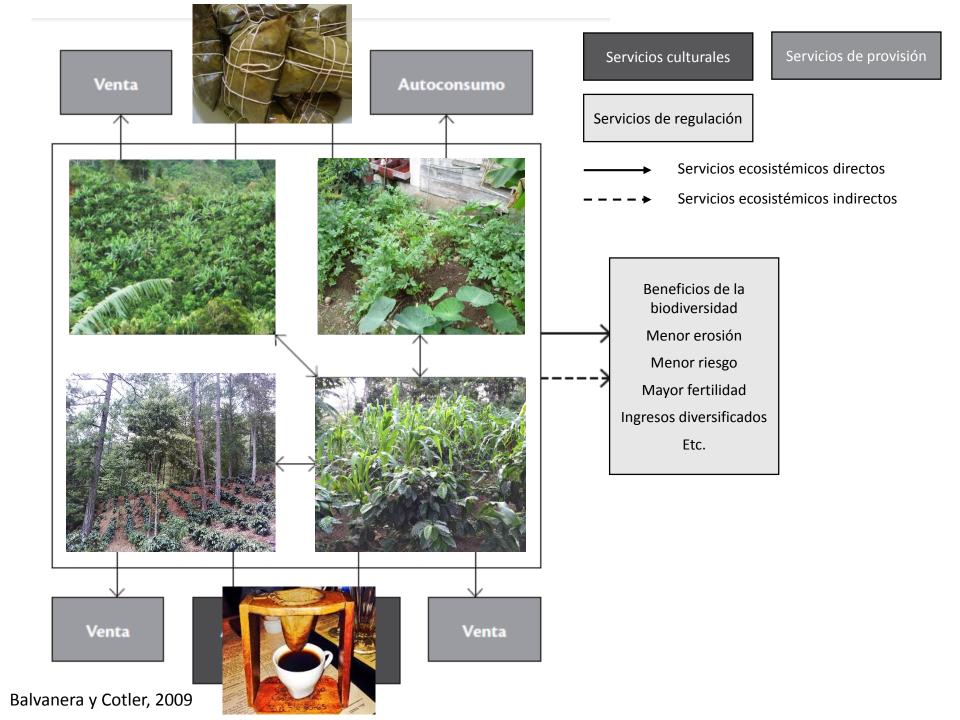



Pollination by wild bees worth: US\$60,000/year

Pest control by birds worth up to: US\$9,400/year (4% of total annual crop)

Agricultural practices that improve ecosystem services


Using agricultural biodiversity to control pests and diseases



¿Cómo podemos manejar la provisión de servicios en las fincas de café?

En función del uso de servicios ecosistémicos, hay un gradiente de *AbEdad* de prácticas agrícolas

No AbE

- Construcción de canales de drenaje o de infraestructura para manejar el agua
- Construcción de muros o barreras para evitar la salinización o la erosión del suelo
- Reubicación de producción de cultivos
- Mayor uso de insumos sintéticos(fertilizantes, pesticidas) para mantener la productividad

- Uso de variedades resistentes a la sequía o calor
- Cambios en las fechas de cosecha y siembra
- Cambios en los sistemas de cultivo
- Uso de prácticas mejoradas de conservación de suelo y agua
- El uso de prácticas mejoradas de manejo de plagas y enfermedades

- Agroforestería
- Sistemas silvopastoriles
- Conservación y restauración de bosques riparios y parches de bosque
- Uso de cortinas rompevientos y barreras vivas
- Uso de la agricultura de conservación
- Restauración de áreas degradadas
- Diversificación de cultivos y paisajes

Opciones de Adaptación basada en Ecosistemas para los paisajes agrícolas

Restauración y protección de las zonas riparias para asegurar el suministro futuro de agua

Conservación de los bosques en las zonas altas para evitar deslizamientos

Ejemplos de prácticas en la finca que promueven la adaptación al cambio climático

Manejo de sombra

Lluvia extrema, temperaturas extremas, tolerancia a la radiación, regulación de la humedad del aire, evita plagas y enfermedades, mantiene resiliencia, mejora fertilidad ;además mantiene biodiversidad

Ejemplos de prácticas en la finca que promueven la adaptación al cambio climático

Barreras vivas

Mejora la estructura del suelo, reduce la erosión, aumenta la infiltración del agua, amortigua fuerte impacto de lluvia; previene pérdidas de suelo

Ejemplos de prácticas que promueven la adaptación al cambio climático

Sistemas silvopastoriles (árboles dispersos, cercas vivas): para proveer sombra y forraje, amortiguamiento contra la alta temperatura o radiación, y amortiguamiento contra el impacto físico de las fuertes lluvias

Mecanismos por los cuales las prácticas de AbE reducen los impactos de los eventos extremos del clima (porcentaje de respuestas)

Mecanismo Práctica	Amortigua temperatura extrema	Amortigua impacto de Iluvia	Proteje contra vientos fuertes	Mejora fertilidad del suelo	Mejora estructura del suelo	Reduce la erosión	Mejora infiltración y retención	Mejora tolerancia a la radiación	Aumenta la tolerancia de plagas y enferm.	Mantiene la resiliencia y fenología	Regula la humedad
	4.3	2.4	4.4	4 -		4 -	. 45	4.0	4 -	4.5	47
Manejo de sombra(65)	43	34	11	15	8	15	15	18	15	15	17
Barreras vivas (31)	O	13	3	10	57	63	23	0	3	0	3
Rompevientos (20)	0	55	95	0	0	O	0	0	5	5	10
Cobertura viva (14)	7	36	0	7	36	57	21	0	14	0	14
Reforestación (8)	50	38	0	0	0	38	38	0	0	12.5	12.5

Algunas dificultades de establecer y tener prácticas AbE

Árboles de sombra

Surcos a contorno

Cercas vivas

"Hay que buscar un buen balance entre producción y servicios para la familia-finca-ambiente"

- Beneficios para el cafetal y la finca
- Beneficios para el ambiente
- Balance económico positivo (Ventas gastos + autoconsumo)

LITERATURA CONSULTADA

Aguilar, E., Peterson, T. C., Obando, P. R., Frutos, R., Retana, J. A., Solera, M., ... & Valle, V. E. (2005). Changes in precipitation and temperature extremes in Central America and northern South America, 1961–2003. *Journal of Geophysical Research: Atmospheres*, 110(D23).

Cerda, R., C. Allinne, L. Krolczyk, C. Mathiot, E. Clément, C.A. Harvey, J.N. Aubertotg, P. Tixier, C. Garyi, and J. Avelino. Effects of shade, altitude and management on multiple ecosystem services in coffee agroecosystems. Submitted to the European Journal of Agronomy.

Giorgi, F. (2006). Climate change hot-spots. *Geophysical research letters*, 33(8).

IPCC, 2014: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Barros, V.R., C.B. Field, D.J. Dokken, M.D. Mastrandrea, K.J. Mach, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea, and L.L.White (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 688.

¡Muchas gracias!

"El peligro existe. Las respuestas son rentables. La inacción es irresponsable"

DARA

Más información:

Ruth Martínez (CI) rmartinez@conservation.org Bárbara Viguera* (CATIE) bviguera@catie.ac.cr

http://www.conservation.org/cascade-espanol